Argonne Training Program on

EXTREME-SCALE COMPUTING August 2 - August 14, 2015

NATIONAL SARORATORY

Adaptive Linear Solvers and Eigensolvers

Jack Dongarra

University of Tennessee
Oak Ridge National Laboratory
University of Manchester

8/10/15 1

IS
<~ Dense Linear Algebra

Common Operations

Ax=b; minllAx—>bll; Ax= Ax

A major source of large dense linear systems is problems
involving the solution of boundary integral equations.

> The price one pays for replacing three dimensions with two
is that what started as a sparse problem in O(n®) variables
is replaced by a dense problem in O(n?).

Dense systems of linear equations are found in numerous
other applications, including:

> airplane wing design;

> radar cross-section studies;

> flow around ships and other off-shore constructions:

> diffusion of solid bodies in a liquid;

> noise reduction; and

8/10/15 2
> diffusion of light through small particles.

5(-)

Existing Math Software - Dense LA

" |DIRECT SOLVERS License Support Type Language Mode
F’I‘}Jl’
Real | Complex F95 C C++ | Shared | Accel. | Dist
Chameleon CeCILL-C See authors| X X X X C M
DPLASMA BSD ves X X X X C M
Eigen Mozilla yes X X X X
Elemental New BSD yes X X X M
ELPA LGPL yes X X F90 X X M
FLENS BSD Yyes X X X X
hmat-oss % yes X X X X X X
LAPACK BSD yes X X X X X
LAPACK9S BSD yes X X X X
libflame New BSD yes X X X X X
MAGMA BSD yes X X X X X C/O/X
NAPACK BSD yes X X X
PLAPACK LGPL yes X X X X M
PLASMA BSD yes X X X X X
rejtrix by-nc-sa yes X X X
ScalL APACK BSD yes X X X X M/P
Trilinos/Pliris BS=D yes X X X X M
ViennaCL MIT yes X X X C/O/X
hﬂ'p //www .netlib.org/utk/people/JackDongarra/la-sw.html

" LINPACK, EISPACK, LAPACK, ScalLAPACK

810155 PLASMA, MAGMA

3

4

<= DLA Solvers

" We are interested in developing
Dense Linear Algebra Solvers

" Retool LAPACK and ScalLAPACK for
multicore and hybrid architectures

8/10/15

¢. 40 Years Evolving SW and Alg
~ Tracking Hardware Developments

ICL

EISPACK (70’s)
(Translation of Algol)

LINPACK (80’s)
(Vector operations)

LAPACK (90's)
(Blocking, cache friendly)

ScalLAPACK (00’s)
(Distributed Memory)

PLASMA (10’s)
New Algorithms
(many-core friendly)

NPAEE

weeEe”

Rely on
- Fortran, but row oriented

Rely on
- Level-1 BLAS operations
- Column oriented

Rely on
- Level-3 BLAS operations

Rely on
- PBLAS Mess Passing

Rely on
- DAG/scheduler
- block data layout
- some extra kernels

What do you mean by performance?

¢ What is a flop/s?

> flop/s is a rate of execution, some number of floating point
operations per second.
» Whenever this term is used it will refer to 64 bit floating point

operations and the operations will be either addition or
multiplication.

¢ What is the theoretical peak performance?

» The theoretical peak is based not on an actual ferfor'mance
from a benchmark run, but on a paper computation to
determine the theoretical peak rate of execution of floating
point operations for the machine.

» The theoretical reak performance is determined by counting
the number of floating-point additions and multiplications (in
full precision) that can be completed during a period of
time, usually the cycle time of the machine.

> For example, an Intel Xeon Haswell dual core at 2.3 GHz
can complete 16 floating point operations per cycle or a
theoretical peak performance of 36.8 GFlop/s per core or

8/10/15 73.6 Gflop/s for the socket.

Peak Performance - Per Core cLop)

FLOPS = cores x clock x

cycle
Floating point operations per cycle per core
+ Most of the recent computers have FMA (Fused multiple add): (i.e.
X <X + y*Z in one cycle)
+ Intel Xeon earlier models and AMD Opteron have SSE2
+ 2 flops/cycle DP & 4 flops/cycle SP
+ Intel Xeon Nehalem (‘o9) & Westmere ('10) have SSE4
+ 4 flops/cycle DP & 8 flops/cycle SP
+ Intel Xeon Sandy Bridge('11) & Ivy Bridge (‘22) have AVX & AVX2
We + 8 flops/cycle DP & 16 flops/cycle SP o |

are @+ Intel Xeon Haswell ("13) & (Broadwell ("14)) AVX2
here

+ 16 flops/cycle DP & 32 flops/cycle SP

+ Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP
+ Intel Xeon Skylake ('15, Q3)

+ 32 flops/cycle DL & 64 flops/cycle SP

CPU Access Latencies in Clock Cycles

Main memory I 167 Cycles
L3 Cache Full Random access I 33
L3 Cache In Page Random access I 18
L3 Cache sequential access M 14
L2 Cache Full Random access [11
L2 Cache In Page Random access M 11
L2 Cache sequential access 1M 11
L1 Cache In Full Random access MW 4
L1 Cache In Page Random access W4

L1 Cache sequential access W4

0 50 100 150 200
Cycles

Memory transfer

* One level of memory model on my laptop:

| 56 GFLOP/sec/core x 2 cores

w— A (Omitting latency here.)
Cycle time = 2.3 GHz g y :

Turbo Boost = 3.5 GHz

3.5 GHz*16 flops/cycle =
56 Gflop/s per core

Cache
(6 MB)
25.6 GB/sec]

Main memory

(16 GB)

The model IS simplified (see next slide) but it provides an upper bound on
performance as well. l.e., we will never go faster than what the model predicts.

(SAlﬂ/df of course, we can go slower ...) ’

FMA: fused multiply-add

axpy: M T %W + | for (j=0;j<n;j++) n MUL
yli] +=a * x[i]; n ADD
2n FLOP
(without increment) n FMA
DOT: a <_ Y alpha = Oe+OO, n MUL
for (j=0;j<n;j++) n ADD
alpha +=x[i] * y[il; 2n FLOP
n FMA
(without increment)

Note: It is reasonable to expect the one loop codes shown here to perform as well as
their Level 1 BLAS counterpart (on multicore with an OpenMP pragma for example).

The true gain these days with using the BLAS is (1) Level 3 BLAS, and (2) portability.

Take two double precision vectors x and y of size
n=375,000. a <—

DOT:

Data size:

— (375,000 double) * (8 Bytes / double) = 3 MBytes
per vector

(Two vectors fit in cache (6 MBytes). OK.)

Time to move the vectors from memory to cache:
— (6 MBytes) / (25.6 GBytes/sec) = 0.23 ms

Time to perform computation of DOT:
— (2nflop)/ (56 Gflop/sec) = 0.01 ms

Vector Operations

total time > max (time_comm , time_comp)
=max (0.23ms, 0.01lms) =0.23ms

Performance for DOT < 3.2 Gflop/s
Peak is 56 Gflop/s

We say that the operation is communication
bounded. No reuse of data.

Level 1, 2 and 3 BLAS

Level 1 BLAS Matrix-Vector operations 2nfiop

— Q) y a — [
AXPY: M O‘| +| DOT:

2n memory reference
AXPY: 2n READ, n WRITE
DOT: 2n READ

RATIO: 1

Gemv: | T ¢ d + K
A

_evel 2 BLAS Matrix-Vector operations

2nZ FLOP
n2 memory references

RATIO: 2

GEMM: m

_evel 3 BLAS Matrix-Matrix operations

2n3 FLOP
3n2 memory references
3n2READ, n2 WRITE

RATIO: 2/3 n

Double precision matrix A and vectors x and y of

size n=860. v | —— © B
A

Data size:

— (860% +2*860 double) * (8 Bytes / double)~ 6

MBytes
Matrix and two vectors fit in cache (6 MBytes).

Time to move the data from memory to cache:
— (6 MBytes) / (25.6 GBytes/sec) = 0.23 ms

Time to perform computation of DOT:
— (2n?flop) / (56 Gflop/sec) =0.26 ms

Matrix - Vector Operations

total time > max (time_comm , time_comp)
=max (0.23ms, 0.26ms) = 0.26ms

Performance for GEMV < 5.7 Gflop/s

Peak is 56 Gflop/s

We say that the operation is communication
bounded. Very little reuse of data.

Take two double precision vectors x and y of size

n=500.

GEMM: — a +B
H
Data size:

— (500% double) * (8 Bytes / double) = 2 MBytes per
matrix

(Three matrices fit in cache (6 MBytes). OK.)

Time to move the matrices in cache:
— (6 MBytes) / (25.6 GBytes/sec) = 0.23 ms

Time to perform computation in GEMM:
— (2n3flop) / (56 Gflop/sec) = 4.46 ms

Matrix Matrix Operations

total_time > max (time_comm, time_comp)
= max(0.23ms, 4.46ms) = 4.46ms
For this example, communication time is less than 6% of the computation time.
Performance = (2 x 500 3 flops)/4.69ms = 53.3 Gflop/s

There is a lots of data reuse in a GEMM; 2/3n per data element. Has good
temporal locality.

If we assume total_time = time_comm +time_comp, we get
Performance for GEMM = 53.3 Gflop/sec

(Out of 56 Gflop/sec possible, so that would be 95% peak performance efficiency.)

Level 1, 2 and 3 BLAS

I core Intel Haswell 17-4850HQ, 2.3 GHz (Turbo Boost at 3.5 GHz);
Peak = 56 Gflop/s

60
= — @

50
=
o 40 =@~dgemm Level-3 BLAS
G =#=dgemv Level-2 BLAS
§ 30 =o-daxpy Level-1 BLAS
©
£
£ 20
2"
a

10 / 3.4 Gflop/s

o — g 16 Glonks
0 | | | ‘?j | # | | | |

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Matrix (Vector) Size N

I core Intel Haswell 17-4850HQ, 2.3 GHz, Memory: DDR3L-1600MHz

6 MB shared L3 cache, and each core has a private 256 KB L2 and 64 KB L1.
The theoretical peak per core double precision is 56 Gflop/s per core.
Compiled with gcc and using Veclib

Issues

 Reuse based on matrices that fit into cache.
 What if you have matrices bigger than cache?

Issues

e Reuse based on matrices that fit into cache.
 What if you have matrices bigger than cache?

 Break matrices into blocks or tiles that will fit.

— A --EEE - EE
AEE BEE
20

8/10/15

By the way
Performance for your laptop

e If you are interested in running the
Linpack Benchmark on your system (inteD intei® Power Gadget

See: Power 579 W 1A: 217 W
https://software.intel.com/en-us/
node/157667?wapkw=mkl+linpack

* Also Intel has a power meter, see:
https://software.intel.com/en-us/articles/ Feaen A 190 GHz GT:0.35 Ghz

intel-power-gadget-20 MA f
i

Temperature 70.00 °C

100
60
40

AAJ (W

8/10/15

21

The Standard LU Factorization LINPACK
1970’s HPC of the Day: Vector Architecture

Factor column Divide by Schur Next Step
with Level 1 Pivot complement
BLAS row update

(Rank 1 update)

Main points
» Factorization column (zero) mostly sequential due to memory bottleneck
« Level 1 BLAS
» Divide pivot row has little parallelism
« Rank -1 Schur complement update is the only easy parallelize task
» Partial pivoting complicates things even further
* Bulk synchronous parallelism (fork-join)
* Load imbalance
» Non-trivial Amdahl fraction in the panel

Y1 o Potential workaround (look-ahead) has complicated implementati02n2

The Standard LU Factorization LAPACK
1980’°s HPC of the Day: Cache Based SMP

0000
atatatatatatatatatatetstodd
atatatatatatatatatatatatada
batatatatatatatotobotatatated
batatatatatatatotobotatatated

000000000

batatatatatatetatatatot st
batatatatatatatetatatetetates
botatatatatatetotatotot bt
batatatatatatetatatatot bt

2R
batatatatel
atatatatsl

Factor panel Triangular Schur Next Step
with Level 1,2 update complement
BLAS update

Main points

« Panel factorization mostly sequential due to memory bottleneck
« Triangular solve has little parallelism
« Schur complement update is the only easy parallelize task
« Partial pivoting complicates things even further
» Bulk synchronous parallelism (fork-join)
* Load imbalance
* Non-trivial Amdahl fraction in the panel
sro0i15 ¢ Potential workaround (look-ahead) has complicated implementation;

£

e Last Generations of DLA Software

LINPACK (70's)

(Vector operations)

LAPACK (80's)
(Blocking, cache
friendly)

ScalLAPACK (90's)
(Distributed Memory)

2D Block Cyclic Layout

Software/Algorithms follow hardware evolution in time

Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS
operations

Rely on
- PBLAS Mess Passing

|

Matrix point of view

Processor point of vie:

=

0

1

ADBE

[N)

off=|lof=|lo|=|lo

1
0
1
0
1
0
1
0

R e o|o|o|o|o

afala|a o|lo|o|o|o

alalala o|lo|o|o|o

wlw|w|w [NEESRENREN]

W W ww NN NN

wlw | w|w [SEESRENRENEEN]

oo oo LR

oo oo INIFNAFN NS FN
oo oo INIFNIFNY NS FN

8/10/15

===~ ~]=]~]]
S B/ E3(0Y e e (Y

(][][Jeo][Jfea] o

S B3/ E3(0Y e (Y (Y

Doaoaoanan

24

_ [

Parallelization of LU and QR.

“ Parallelize the update: dgemm
— « Easy and done in any reasonable software.
* This is the 2/3n3 term in the FLOPs count.

» Can be done efficiently with LAPACK+multithreaded BLAS

\Y W/

dgetf2
I‘— Iu(I) l
A7 INN
dtrsm (+ dswp)
l l l l l Fork - Join parallelism
R Y — ' ‘ ‘ ‘ ‘ Bulk Sync Processing

dgemm

O-m1=
N7

o
<« Synchronization (in LAPACK LU)

GETF2 ﬂ » fork jOin
(Facior a panel | » bulk synchronous processing

!
l

/\

1111

>

1111

xGEMM

run time system executes tasks respecting

Numerical program generates tasks and
data dependences.

PLASMA LU Factorization

Dataflow Driven
XTRSM
~

‘\

A 2
IcLor-
(]

8/10/15

&

< Data Layout is Critical

y Y Y Y

y Y Y Y

y Y Y Y

y Y Y Y Y

" Tile data layout where each data
tile is contiguous in memory

" Decomposed into several fine-
grained tasks, which better fit the
o5 memory of the small core caches

{\
<-QUARK

Shared Memory Superscalar Scheduling

FOR k =0..TILES-1
A[k][k] — DPOTRF(A[K][K])
FOR m = k+1..TILES-1
A[m][K] < DTRSM(A[k][k] A[m][K])
FOR m =k+1..TILE
A[m][m] < DSYRK(A[m][k] A[m][m])
FOR n = k+1..m-1
A[m][n] <~ DGEMM(A[m][K], A[n][k], A[m][n])

8/10/15

definition — pseudocode

29

" A runtime environment for the
dynamic execution of

precedence-constraint tasks
(DAGs) in a multicore machine
» Translation

> If you have a serial program that
consists of computational kernels
(tasks) that are related by data
dependencies, QUARK can help you
& execute that program (relatively
efficiently and easily) in parallel on
a multicore machine

8/10/15

30

ICL

The Purpose of a QUARK Runtime

"Objectives
> High utilization of each core

> Scaling to large number of cores N

» Synchronization reducing algorithms
“Methodology

> Dynamic DAG scheduling (QUARK)

> Explicit parallelism

> Implicit communication

> Fine granularity / block data layout

"Arbitrary DAG with dynamic SCthUling

DAG scheduled
parallelism

8/10/15

Vs — \
‘ @@I@Q,:, @5@
/@5 @@m@@ &&*

Fork-join parallelism
Notice the synchronization

penalty in the presence of
heterogeneity.

31
31

b PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

 DAGs get very big, very
fast

e So windows of active
tasks are used; this

means no global critical
path

o Matrix of NBxNB tiles;
NB3 operation

« NB=100 gives 1 million
tasks

7
L4

I/

b PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

 DAGs get very big, very
fast

e So windows of active
tasks are used; this

means no global critical
path

o Matrix of NBxNB tiles;
NB3 operation

« NB=100 gives 1 million
tasks

[

c

ICL

PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

 DAGs get very big, very
fast

e So windows of active
tasks are used; this

means no global critical
path

o Matrix of NBxNB tiles;
NB3 operation

« NB=100 gives 1 million
tasks

34

b PLASMA Local Scheduling

Dynamic Scheduling: Sliding Window

 DAGs get very big, very
fast

e So windows of active
tasks are used; this

means no global critical
path

o Matrix of NBxNB tiles;
NB3 operation

« NB=100 gives 1 million
o tasks

35

N
.cf Algorithms [PLASMA [scdz]potrf[Tile][Async]() }
Cholesky

e Algorithm
e equivalent to LAPACK

e Numerics
e same as LAPACK

e Performance

e comparable to vendor on few cores

e much better than vendor on many cores

Cholesky Performance (double prec.)

AMD Istanbul, 2.8 GHz, 8 sockets (48 cores)

250
PLASMA

200
MKL

150

Gflop/s

100

50
»—3y—% LAPACK

8/1 0/1 5 0 2000 4000 6000 8000 10000 12000

Size

N
<-Algorithms
LU

[PLASMA [scdz]getrf[_Tile][Async]() }

8/10/15

e Algorithm

equivalent to LAPACK
same pivot vector
same L and U factors

same forward substitution procedure

e Numerics

same as LAPACK

e Performance

e comparable to vendor on few cores

e much better than vendor on many cores

280
260
240
220
200

Gflop/s

120

100}

80
60

20

‘7
180 // s

160} /

140

—&— partial
—$—incremental
—©—tournament
—*—PRBT
—A—no-pivoting
—¥—MKL

2K 4K 6K BK 10K 14K 18K 22K 26K 30K
Matrix dimension (n=m)

Factorization alone, using16 cores

16 Sandy Bridge cores

100 A/ —&—partial
80l %/ ~—%—incremental
/ —©—tournament
60 & ——PRBT
40 —A—no-pivoting
20 —¥—MKL

2K 4K 6K 8K 10K 14K 18K 22K 26K 80K
Matrix dimension (n=m)

Factorization and solve with iterative refinement, using 16 cores

37

N
<-Algorithms

incremental QR Factorization

[PLASMA [scdz]geqrt[Tile][_Async]() }

N |
HEEEN

<
S EEEEEE

8/10/15

e Algorithm
e the same R factor as LAPACK (absolute values)

o different set of Householder reflectors
e different Q matrix

o different Q generation / application procedure

e Numerics
e same as LAPACK

e Performance

e comparable to vendor on few cores

e much better than vendor on many cores

38

e

~N

/

|cT Algorithms [PLASMA [scdz]geqrt[Tile][Async]()

incremental QR Factorization (Communication Avoiding) -

PLASMA_HOUSEHOLDER_MODE,

PLASMA_Set
PLASMA_TREE_HOUSEHOLDER);

e Algorithm
e the same R factor as LAPACK (absolute values)

o different set of Householder reflectors
e different Q matrix

o different Q generation / application procedure

e Numerics
e same as LAPACK

e Performance

e absolutely superior for tall matrices

8/10/15

39

processes

Communication Avoiding QR

1

R(RgY)

(B

0O - ;
QR(I) —> (RN) —’[QR(e | —> (N ’] _-)[Q

Quad-socket, quad-core machine Intel Xeon
EMT64 E7340 at 2.39 GHz.
Theoretical peak is 153.2 Gflop/s with 16

cor8¢10/15
Matrix size 51200 by 3200

R
QT LN PNCUE BN

A= Q1Q2Q3R =QR

Theoretical Peak

DGEMM Peak

——T SP-CAQR

. / |
~—0 : !
) = | — Em(=°')—"(R" '}I
160
.L / 140
CR() —> (R, ’\ / 120
100
3
o 80
[Y 2

_/«‘bﬂmm

60

‘T ScaLAPACK

MKL

[LAPACK |

4 6 8 10 12
Number of Column Tiles (Width)

4D

N

<-Algorithms

three-stage symmetric EVP

{ PLASMA _[scdz]syev][Tile][Async]() }

8/10/15

Speedup: Time(MKL)/Time(PLASMA)

10

0 L L L L L L L L L L L L L

e Algorithm
e two-stage tridiagonal reduction + QR Algorithm

o fast eigenvalues, slower eigenvectors

(possibility to calculate a subset)

e Numerics
e same as LAPACK

e Performance

e comparable to MKL for very small problem°s‘° R

e absolutely superior for larger problems

PLASMA symmetric Eigenvalue problem

- A-DSYTRD __a

—4—DSYEVD noVec -l -

—=—DSYEVR 20% V -
DSYEVD all V

16 cores of Intel Sandy Bridge 41

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k
Matrix size

{\
<-Algorithms

three-stage SVD

[PLASMA [scdz]gesvd[Tile][Async]() }

e Algorithm

e two-stage bidiagonal reduction + QR iteration

N\

N\

A
[N

N |

L]

HENE

e Performance

e Numerics
e same as LAPACK

\ o fast singular values, slower singular vectors
(possibility of calculating a subset)

e comparable with MKL for very small problems

e absolutely superior for larger problems

10— T T T T T T T T T T T
—a&— 2-stages / MKL (DGEBRD)
g}{ —=—2-stages / MKL (DGESDD NO Vectors) J
—e— 2-stages / MKL (DGESDD 20% Vectors)
gl = 2 ges / MKL (DGESDD ALL Vectors) |
7k
a 6
=]
°
g s
[
af
3t = i
2} i)\
8/10/5=—
O

. s n n . L L s L n n .
4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k

2k
DGESDD on 48 AMD cBreg

6

5.50

[|—o—2 ges/ MKL (DGESDD ALL Vectors)

—A— 2-stages / MKL (DGEBRD)
—sa— 2-stages/ MKL (DGESDD NO Vectors)
—e— 2-stages / MKL (DGESDD 20% Vectors)

L 1) ! 1 |) ! L | 1 L L
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k
Matrix size

DGESDD on 16 Sandy Bridge cores

42

£ Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

L e B

I-} e |
A

BAEATS Rt oo
i I mm e .'.'.'.h... 1 1 |?I“

A i

| u |] oo

<. $t2' R
o

'hLI L o o D O

i @

TRTRI

,

LAUUM

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

POTRF+TRTRI+LAUUM: 25 (71-3)
Cholesky Factorization alone: 3t-2

Pipelined: 18 (3t+6)

ICL

“Mixed Precision Methods

* Mixed precision, use the lowest
precision required to achieve a given
accuracy outcome

= [mproves runtime, reduce power
consumption, lower data movement

= Reformulate to find correction to
solution, rather than solution; Ax rather
than x.

S (xi)

S (xi)

Xi+1 = Xj —

N

< |dea Goes Something Like This...

o Exploit 32 bit floating point as much as
possible.

= Especially for the bulk of the computation

e Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

e Intuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using
selected higher precision and,

= Perform the update of the 32 bit results with the
correction using high precision.

45

N
~ Mixed-Precision lterative Refinement

 Iterative refinement for dense systems, Ax = b, can work this

way.
L U = lu(A) o(n’)
x = L\(U\b) o(n?
r=>b- Ax o(n?)
WHILE || r || not small enough
z = L\(U\r) o(n?)
X=X+2Z o(n’)
r=b- Ax o(n?)
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

46

ICL

‘Mixed-Precision lterative Refinement

Iterative refinement for dense systems, Ax = b, can work this
way.

L U = lu(A) SINGLE o(n’)
x = L\(U\b) SINGLE o(n?
r=b- Ax DOUBLE o(n?)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n?)
X=X+2Z DOUBLE o(n’)
r=>b- Ax DOUBLE o(n?)
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

= |t can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision

O(n?) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(108) 47

~. Mixed precision iterative refinement

Solving general dense linear systems using mixed precision iterative refinement

1600

1400 =4SP Solve

1200
-
1000 DP Solve

800

GFlop/s

600

400

GPU K20c (13 MP @0.7 GHz, peak 1165 GFlop/s)
CPU Genuine Intel (2x8 @2.60GHz, peak 333 GFlop/s)

200

0

D A O A QO O O N M O
X O N9 O O O O O O
F S S & F S

Matrix size 48

~. Mixed precision iterative refinement

Solving general dense linear systems using mixed precision iterative refinement

1600
=*=SP Solve
1400
<#-DP Solve (MP
1200 lter.Ref.)
1000 -#-DP Solve
2]
3
O 800
L
O 600
400
GPU K20c (13 MP @0.7 GHz, peak 1165 GFlop/s)
CPU Genuine Intel (2x8 @2.60GHz, peak 333 GFlop/s)
200
0
© A o QO Q Q Q QO
D N O Q S O Q" & O
TS S F S

Matrix size 49

¢. Critical Issues at Peta & Exascale for

IcLOr-

Algorithm and Software Design

* Synchronization-reducing algorithms

= Break Fork-Join model
« Communication-reducing algorithms

= Use methods which have lower bound on communication
* Mixed precision methods

= 2x speed of ops and 2x speed for data movement

* Autotuning

= Today’s machines are too complicated, build “smarts” into
software to adapt to the hardware

« Fault resilient algorithms
= Implement algorithms that can recover from failures/bit flips

« Reproducibility of results

= Today we can’t guarantee this. We understand the issues,

but some of our “colleagues” have a hard time with this. 50

ICL

Collaborators / Software / Support

. PLASMA e el FUJITSU
http://icl.cs.utk.edu/plasma/ RVIDIA. nag@ AMDZ
¢
- MAGMA &\ The MathWorks

http://icl.cs.utk.edu/magmal/

'_; U.S. DEPARTMENT OF
A'__‘: ‘_~.-'J ,

. Quark (RT for Shared Memory) @f JENERGY

http://icl.cs.utk.edu/quark/

<

. Collaborating partners
University of Tennessee, Knoxville

. PaRSEC(Parallel Runtime Scheduling ~ jiiversy of Gatforna. Serkeley

and Execution Control
MAGMA PLASMA

http://icl.cs.utk.edu/parsec/ EYEE [E:3[E
x
e o

IcLor-

52

